International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Karle, J. (1967). Private communication.
Karle, J. \& Hauptman, J. (1953). Acta Cryst. 6, 473.
Lipcomb, W. N. \& Lewin, R. (1964). Boron-Nitrogen Chemistry, Advances in Chemistry Series, No. 42, Ed. K. Niedenzu, Ch. 32. Washington, D. C.: American Chemical Society.
Long, R. E. (1965). Ph. D. Thesis, Part III, UCLA.
Niedenzu, K. \& Dawson, J. W. (1965). Boron-Nitrogen Compounds, p. 78. New York: Academic Press.
Norment, H. G. (1963). LSQPLN, Least-Squares Plane and Line Fitter. U.S. Naval Research Laboratory.

Perkins, P. G. \& Wall, D. H. (1966). J. Chem. Soc. A, p. 235.

Roberts, J. C. (1962). Notes on Molecular Orbital Calculations, p. 53. New York: Benjamin.
Roothaan, C. C. J. \& Mulliken, R. S. (1948). J. Chem. Phys. 16, 118.
Sayre, D. (1952). Acta Cryst. 5, 60.
Streitwieser, A. (1961). Molecular Orbital Theory for Organic Chemists. New York: John Wiley.
Tsai, C-c. \& Streib, W. E. (1968). Tetrahedron Letters, p. 669.

Vand, V. (1965). Prog. Abstr. Amer. Cryst. Assoc. Meeting, June 27-July 2. Abstract N7. Pittsburgh: Polycrystal Book Service.
Watanabe, J., Ito, K. \& Kubo, M. (1960). J. Amer. Chem. Soc. 82, 3294.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.

The Crystal Structure and Absolute Configuration of (+)-Methyl \boldsymbol{p}-Tolyl Sufoxide

By Ulrich de la Camp and Håkon Hope
Department of Chemistry, University of California, Davis, California 95616, U.S.A.

(Received 15 July 1969)

Abstract

The crystal structure of (+)-methyl p-tolyl sulfoxide has been solved by the heavy-atom method and refined by Fourier and least-squares techniques. The absolute configuration has been determined by the anomalous phase displacement technique with the sulfur atom acting as the anomalous scatterer. The space group is $P 2_{1} 2_{1} 2_{1}$ with four molecules per unit cell of dimensions $a=5.826(6), b=8.621$ (8) and $c=16.435$ (3) \AA. Three-dimensional data ($\mathrm{Cu} K \alpha$) were collected with a Picker automatic diffractometer. The final R indices obtained for the two configurations are 0.034 and 0.044 respectively, for 832 observed reflections. In the notation of Cahn, Ingold \& Prelog the correct absolute configuration at sulfur is R; the same assignment had been made earlier on the basis of chemical evidence.

Introduction

One of the most fruitful approaches to the elucidation of a specific reaction mechanism lies in the study of the reaction stereochemistry which in turn may yield clues concerning the geometry of the transition state. In general, knowledge of the dynamic stereochemistry of carbon centers has played a key role in the evolution of our present detailed picture of the reaction mechanisms of such centers. The importance of sulfur as a reaction center in biological processes is well documented; however, relative to the corresponding situation for carbon centers, fundamental mechanistic studies of sulfur centers are rare. The work reported here is part of an effort to rigorously settle the question of absolute and relative configuration for a number of optically active compounds with asymmetric sulfur centers.

At the time this study was started the conversion of $(-)$-p-tolyl (-)-menthyl sulfinate (I) to (+)-methyl p-tolyl sulfoxide (II) by treatment with methyl Grignard reagent was thought to proceed via inversion of configuration, based on optical rotatory dispersion and
circular dichroism studies by Mislow, Green, Lauer, Melillo, Simmons \& Ternay (1965).

m.p. 105-106 ${ }^{\circ}$
$[\alpha]_{D}=-198^{\circ}$ (acetone)
(I)

m.p. 73-74.5 ${ }^{\circ}$
$[\alpha]_{\mathrm{D}}=+146^{\circ}$ (acetone)
(II)

m.p. $124-125^{\circ}$
$[\alpha]_{\mathrm{D}}=-320^{\circ}$ (acetone)
(III)

The conversion of (II) to (III) by treatment with $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NSO}$ is accompanied by formation of SO_{2} and is assumed by Day \& Cram (1965) to proceed via a mechanism in which the entering and leaving groups form part of a quasi-6-ring transition state. For overall trigonal bipyramidal geometry at the sulfur atom, this would mean that the entering and leaving groups occupy equatorial (radial) positions. Optical rotatory dispersion data led Day \& Cram to conclude that conversion of (II) to (III) also involved inversion of configuration at the asymmetric sulfur atom. Indeed, it so far appears that in organo-sulfur stereochemistry nucleophilic displacement at the asymmetric sulfur center always proceeds with inversion. However, the evidence in support of this rule is not always as rigorous as one might wish. It is therefore important that the absolute configurations of representative compounds be established unambiguously. The crystal structure and absolute configuration of the p-iodo analog of (I) was established by X-ray diffraction methods by Fleischer, Axelrod, Green \& Mislow (1964). The absolute configuration of the molecule was determined through the known configuration of the (-)-menthyl group. These investigators were also able to relate the absolute configuration of the p-iodo analog to that of (I). Since a knowledge of the absolute configuration of (II) would provide unambiguous evidence for the steric course of the Grignard conversion of (I) to (II) we felt that (II) would be the most logical compound to investigate next. During the course of this work the absolute configuration of (II) was determined by chemically relating it to sulfoxides of known absolute configuration (Axelrod, Bickart, Jacobus, Green \& Mislow, 1968).

Experimental

Crystals were grown from n-heptane solution by evaporation at room temperature. The space group was determined from symmetry and systematic absences ($h 00,0 k 0,00 l$ absent for odd indices) observed on Weissenberg and precession photographs. The cell dimensions were established from a least-squares calculation with a set of reflections measured on a Picker diffractometer. For intensity measurements a suitable crystal was ground into a sphere of radius 0.0125 cm . The high vapor pressure of the substance made it necessary to give the crystal a protective coating which
consisted ${ }^{3}$ of a thin layer of Eastman 910 adhesive and a further coat of 'Gluebird'. (The high solubility of the sulfoxide in water prevented the immediate use of the water-based glue.) Three-dimensional diffraction data for one octant $\left[2 \theta(\max)=160^{\circ}\right]$ were collected with a Picker automatic diffractometer using Ni filtered $\mathrm{Cu} K \alpha$ radiation. In order to minimize coincidence losses, count rates were automatically held below approximately 10,000 counts. sec^{-1} by a set of attenuators. Three check reflections which were used to monitor the condition of the crystal remained stable for the first half of the run; however, after that a gradual decrease in the intensities were observed. The maximum decrease amounted to about 7%. Because of the decay problem, and because we felt that the application of the R index method (Ibers \& Hamilton, 1964) to the absolute configuration determination would be straightforward, we did not collect data for any Bijvoet pairs.

The data set was corrected for Lorentz, polarization and absorption ($\mu R=0.353$) effects in the usual manner. Furthermore a decay correction based on the observed drop in intensities was applied. The standard deviations of the observed structure factors were estimated from the estimated standard deviations of the recorded scan and background counts, where each recorded number of counts N was assigned an e.s.d. from the expression $s(N)=N^{1 / 2}+0 \cdot 005 N$. All reflections whose intensity was less than three times the corresponding standard deviation were treated as 'unobserved'. Out of 1046 available reflections 832 were then recorded as 'observed'. Refinement of the structure was carried out using only the 'observed' reflections.

Crystal data

(+)-Methyl p-tolyl sulfoxide, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{SO}$. M.W. 154-09

Space group: $P 2_{1} 2_{1} 2_{1}$ from absences and intensity symmetry

$$
\begin{aligned}
a & =5.826(6) \AA \\
b & =8.621(8) \AA \\
c & =16.435(3) \AA \\
d_{m} & =1.19 \quad d_{x}=1.24 \mathrm{~g} . \mathrm{cm}^{-3} \\
Z & =4 \\
t & =23^{\circ} \mathrm{C}, \lambda \mathrm{Cu} K \alpha_{1}=1.54051 \\
\mu & =28.3 \mathrm{~cm}^{-1} \text { for } \mathrm{Cu} K \alpha
\end{aligned}
$$

Solution and refinement of the structure

The position of the sulfur atom was found from a three-dimensional Patterson map. A Fourier summation phased on the sulfur atom immediately revealed the location of all the carbon atoms and the oxygen atom. Two cycles of full-matrix least-squares refinement with isotropic temperature factors reduced the R index to 0.12 and two further cycles with anisotropic temperature factors reduced R to 0.077 . A difference Fourier synthesis was then calculated from which the hydrogen positions were determined. All ring H atoms
were very well defined; however, the peaks corresponding to the methyl H atoms differed significantly in height, with one atom in each group being particularly poorly defined. We considered the possibility of rotational disorder, but as can be seen from Fig. 1, which shows a section through the ring methyl group, there is no real indication of such disorder. Two cycles of leastsquares refinement with all atoms included, the H atomswith individual isotropictemperature factors, gave an R index of 0.045 . At this stage the real and imaginary correction terms to the atomic scattering factors were introduced for sulfur and oxygen. The values $\Delta f_{\mathrm{s}}^{\prime}=0 \cdot 3, \Delta f_{\mathrm{s}}^{\prime \prime}=0.6, \Delta f_{\mathrm{o}}^{\prime}=0.0$ and $\Delta f_{\mathrm{o}}^{\prime \prime}=0.1$ were taken from International Tables for X-ray Crystallography (1962). Both enantiomers were then refined to convergence. The lowest R indices for the two enantiomers were 0.044 and 0.050 respectively. The enantiomer with the lower R index was now assumed to be the correct one.
Discrepancies between F_{o} and F_{c} for some high intensity reflections indicated secondary extinction effects. Correction of the data by use of the method of Zachariasen (1963) had the immediate effect of reducing R from 0.044 to 0.038 .
The weighting scheme prior to the secondary extinction correction was that proposed by Hughes (1941), and after the correction the weight of $(\Delta F)^{2}$ was made equal to the reciprocal of the variance of the corresponding F_{0}. Four additional cycles of leastsquares refinement of the correct enantiomer with all hydrogen atoms included gave a final R index of 0.034 . The incorrect enantiomer was also refined to convergence and gave an R of $0 \cdot 044$. When anomalous correction terms were omitted the structure could be refined to $R=0.036$.

Computing procedures

All calculations were performed on an IBM 7044 computer, for the most part using programs listed elsewhere (Hope \& Cbristensen, 1968).
The least-squares program was modified by the authors to calculate structure factors which include both the real and imaginary correction terms for anomalous scattering. The program minimizes the quantity $S=\sum w\left(K . F_{o}-G \mid F_{c}\right)^{2}$ by full-matrix methods. G is one of the adjustable parameters, which is reset to its original value by changing K after each cycle. Estimated standard deviations were obtained from the expression $\left(a_{i i} S / m\right)^{1 / 2}$, where $a_{i i}$ is the diagonal element in the inverse normal equation matrix, and m is the difference between the number of observations and the number of parameters adjusted.
The isotropic temperature factor is of the form $\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)$, and the anisotropic of the form $\exp \left(-B_{11} a^{* 2} h^{2} / 4-B_{22} b^{* 2} k^{2} / 4-B_{33} c^{* 2} l^{2} / 4-B_{12} a^{*} b^{*} h k / 2\right.$ $\left.-B_{13} a^{*} c^{*} h l / 2-B_{23} b^{*} c^{*} k l / 2\right)$. The atomic form factors for sulfur, oxygen and carbon are those given by Hanson, Herman, Lea \& Skillman (1964). For hydrogen the
form factors used are those given by Stewart, Davidson \& Simpson (1965).

The secondary extinction correction program, written by A.T.Christensen, was also modified by the authors to calculate structure factors with form factors which include the real and imaginary components of the anomalous scattering corrections. The program applies the correction in the form $F_{\text {corr }}=F_{0}\left(1+C \beta J_{o}\right)^{1 / 2}$, where C is a constant and

$$
\beta=2\left(1+\cos ^{4} 2 \theta\right) /\left(1+\cos ^{2} 2 \theta\right)^{2} \cdot \frac{\mathrm{~d} A^{*} / \mathrm{d} \mu R}{\mathrm{~d} A_{0}^{*} / \mathrm{d} \mu R}
$$

(Zachariasen, 1963).
The R index is defined by $R=\sum| | F_{o}\left|-\left|F_{c}\right| / \sum\right| F_{o} \mid$ (observed F 's only).

Discussion

The difference in the R indices for the two configurations is the largest yet reported for structures with either sulfur or silicon as the anomalous scatterer. The application of Hamilton's generalized R factor method (Hamilton, 1965) to test the validity of the configurational assignments shows that the probability of the S configuration being the correct one is considerably smaller than 0.001%, so that the configuration around the sulfur atom is R in the notation of Cahn, Ingold \& Prelog (1956). This is in agreement with the absolute configuration assigned by Axelrod et al. (1968). Since the absolute configurations of both ends of the conversion reaction of sulfinate ester to sulfoxide have now been determined rigorously, one can unambiguously conclude that this conversion occurs with inversion of configuration at the sulfur atom.

Fig.1. Difference electron density map. Section through the plane of the ring methyl hydrogens. Contours are drawn for $0 \cdot 10,0 \cdot 15, \ldots$ e. \AA^{-3}. Crosses indicate the positions from the least-squares refinement.

The final positional and thermal parameters for the R configuration together with their estimated standard deviations, are given in Tables 1, 2 and 3. A listing of the observed structure factors and those calculated from the final parameters (R configuration) is given in Table 4. The molecular geometry parameters not involving hydrogen are given in Fig.2. The 'uncorrected' distances and angles were calculated from the final positional parameters while the 'corrected' distances (given in parentheses) were derived from coordinates obtained by the method of Cruickshank (1961) following an analysis of the thermal motion of the molecules (Schomaker \& Trueblood, 1968).

Table 1. Positional parameters (with estimated standard deviations) for sulfur, oxygen and carbon atoms

	x	y	z
$\mathrm{~S}(1)$	$0.4558(2)$	$0.2122(1)$	$0.6073(1)$
$\mathrm{O}(2)$	$0.5687(5)$	$0.0994(3)$	$0.5512(1)$
$\mathrm{C}(3)$	$0.5627(13)$	$0.4007(6)$	$0.5682(3)$
$\mathrm{C}(4)$	$0.6298(6)$	$0.2199(4)$	$0.6976(2)$
$\mathrm{C}(5)$	$0.8330(6)$	$0.1409(4)$	$0.7018(2)$
$\mathrm{C}(6)$	$0.9588(8)$	$0.1425(4)$	$0.7723(2)$
$\mathrm{C}(7)$	$0.882(6)$	$0.2244(4)$	$0.8400(2)$
$\mathrm{C}(8)$	$0.6820(7)$	$0.3035(4)$	$0.8346(2)$
$\mathrm{C}(9)$	$0.5491(7)$	$0.3011(4)$	$0.7646(2)$
$\mathrm{C}(10)$	$1.0262(11)$	$0.2266(8)$	$0.9172(3)$

Fig.2. (a) Interatomic distances (from parameters in Table 1), and (in parentheses) interatomic distances corrected for anisotropic thermal motion effects. E.s.d.'s are $0.003-0.006 \AA$. (b) Bond angles (uncorrected). E.s.d.'s are about $0 \cdot 3^{\circ}$. The drawing represents a projection of the molecule on the plane of the benzene ring. The correct absolute configuration is shown.

Table 2. Anisotropic thermal parameters (with estimated standard deviations) for sulfur, oxygen and carbon atoms

	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
S(1)	$5 \cdot 83$ (4)	6.02 (4)	$6 \cdot 27$ (4)	$-1 \cdot 12$ (5)	$0 \cdot 28$ (4)	-0.71 (4)
O(2)	$9 \cdot 42$ (18)	5.96 (11)	$6 \cdot 28$ (12)	-0.99 (15)	$0 \cdot 68$ (15)	-1.83 (10)
C(3)	$9 \cdot 22$ (42)	$5 \cdot 73$ (20)	$7 \cdot 60$ (27)	-0.43 (28)	-1.59 (30)	$0 \cdot 13$ (20)
C(4)	$4 \cdot 84$ (15)	$4 \cdot 39$ (14)	$5 \cdot 05$ (15)	-0.50 (15)	0.91 (13)	-0.28 (13)
C(5)	$5 \cdot 20$ (19)	$5 \cdot 21$ (18)	5.96 (19)	-0.04 (15)	$1 \cdot 55$ (17)	-1.12 (15)
C(6)	4.93 (18)	$5 \cdot 53$ (18)	$6 \cdot 68$ (20)	0.98 (18)	0.36 (18)	-0.10 (15)
C(7)	6.09 (18)	4.04 (14)	$5 \cdot 17$ (16)	-0.05 (16)	0.90 (14)	$0 \cdot 42$ (13)
C(8)	6.79 (22)	$4 \cdot 62$ (16)	$5 \cdot 05$ (17)	$0 \cdot 65$ (17)	1.58 (17)	-0.29 (15)
C(9)	5.04 (16)	4.86 (15)	$6 \cdot 38$ (18)	0.73 (19)	1.18 (17)	-0.17 (15)
C(10)	$8 \cdot 71$ (33)	$7 \cdot 77$ (26)	$5 \cdot 91$ (23)	0.44 (31)	-0.34 (23)	0.95 (22)

Table 3. Positional and isotropic thermal parameters (with estimated standard deviations) for hydrogen atoms

	x	y	z	B
H(11)	0.9705 (80)	$0 \cdot 1561$ (45)	0.9514 (27)	$9 \cdot 27$ (143)
H(12)	1.0183 (93)	$0 \cdot 3078$ (46)	$0 \cdot 9477$ (26)	$9 \cdot 83$ (161)
H(13)	1-1934 (75)	$0 \cdot 2203$ (54)	0.9033 (22)	$10 \cdot 80$ (157)
H(14)	$0 \cdot 6320$ (55)	0.3563 (35)	0.8778 (18)	$6 \cdot 15$ (90)
H(15)	$0 \cdot 3902$ (54)	$0 \cdot 3448$ (35)	0.7638 (16)	$5 \cdot 46$ (85)
H(16)	$0 \cdot 8944$ (59)	0.0959 (39)	0.6531 (18)	$7 \cdot 19$ (93)
H(17)	1-1051 (58)	0.0928 (36)	0.7782 (18)	$5 \cdot 40$ (84)
H(18)	0.6733 (69)	$0 \cdot 3942$ (55)	0.5550 (25)	7.94 (171)
H(19)	0.4599 (78)	$0 \cdot 4649$ (45)	$0 \cdot 6017$ (23)	9.71 (146)
H(20)	$0 \cdot 3885$ (84)	$0 \cdot 4125$ (53)	$0 \cdot 5163$ (24)	$12 \cdot 13$ (140)

(a)

(b)

Fig. 3. (a) Projection along the b axis (top view). (b) Projection along the a axis (front view).

Table 4．Observed and calculated structure factors
The five columns in each group list $l, 10 F_{o}, 10 F_{c}$ ，the phase angle $\left({ }^{\circ}\right)$ and $100 / \sigma\left(F_{o}\right)$ ．

4

こャッル・ールー

Two different calculations were performed，one in which all ten＇heavy＇atoms were incorporated in the rigid body，and one in which the rigid body consisted of the tolyl carbon atoms plus the sulfur atom．The librational ellipsoids for the two rigid bodies are very similar，both in magnitude and orientation．The root－ mean－square differences between＇observed＇and cal－ culated $U_{i j}$ are 0.004 and $0.003 \AA^{2}$ respectively．The angle between the vector $\mathrm{S}-\mathrm{C}(7)$ and the major libra－ tional axis is 14° for the ten－atom case and 8° for the eight－atom case．The magnitudes of the principal axes of the translational and librational tensors for the ten atom rigid－body are listed in Table 5．The screw com－ ponents are all very small．The fold angle between the planes defined by the atoms $\mathrm{C}(3)-\mathrm{S}(1)-\mathrm{C}(4)$ and $\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(4)$ ，respectively，is $-71 \cdot 3^{\circ}$ ，and the twist angle needed to make the projection of the line $\mathrm{S}(1)-\mathrm{O}(2)$ coincide with that of the line $\mathrm{C}(4)-\mathrm{C}(5)$ is
$+8 \cdot 2^{\circ}$ ．The signs are consistent with the convention proposed by Klyne \＆Prelog（1960）．

Table 5．Principal components of rigid body translation and libration tensors
Columns 1 and 2 contain the r．m．s．translational amplitudes（ \AA ） and r．m．s．librational amplitudes（degrees）respectively for the 10 －atom rigid body．Columns 3 and 4 are the amplitudes for the 8 －atom rigid body．

0.28	7.3	0.28	7.7
$0 \cdot 21$	$4 \cdot 1$	$0 \cdot 22$	$4 \cdot 1$
0.21	$3 \cdot 1$	0.21	3.7

Distances and angles involving hydrogen atoms are listed in Tables 6 and 7，respectively．Packing dia－ grams of the structure are shown in Fig．3（a）and（b）， representing views along the b and a axes respectively． No unusual intermolecular contacts were found．

Table 6. Carbon-hydrogen distances
E.s.d.'s are about $0.04 \AA$.

$\mathrm{C}(3)-\mathrm{H}(18)$	0.88
$\mathrm{C}(3)-\mathrm{H}(19)$	0.87
$\mathrm{C}(3)-\mathrm{H}(20)$	1.18
$\mathrm{C}(5)-\mathrm{H}(16)$	0.96
$\mathrm{C}(6)-\mathrm{H}(17)$	0.96
$\mathrm{C}(8)-\mathrm{H}(14)$	0.89
$\mathrm{C}(9)-\mathrm{H}(15)$	1.00
$\mathrm{C}(10)-\mathrm{H}(11)$	0.89
$\mathrm{C}(10)-\mathrm{H}(12)$	0.86
$\mathrm{C}(10)-\mathrm{H}(13)$	1.00

Table 7. Angles involving hydrogen atoms
E.s.d.'s are about 2° for $\mathrm{X}-\mathrm{X}-\mathrm{H}$ and about 4° for $\mathrm{H}-\mathrm{X}-\mathrm{H}$.

$\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{H}(18)$	105
$\mathrm{~S}(1)-\mathrm{C}(3)-\mathrm{H}(19)$	104
$\mathrm{~S}(1)-\mathrm{C}(3)-\mathrm{H}(20)$	100
$\mathrm{H}(18)-\mathrm{C}(3)-\mathrm{H}(19)$	129
$\mathrm{H}(18)-\mathrm{C}(3)-\mathrm{H}(20)$	119
$\mathrm{H}(19)-\mathrm{C}(3)-\mathrm{H}(20)$	96
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(16)$	119
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(16)$	121
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(17)$	124
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(17)$	115
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(11)$	109
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(12)$	118
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(13)$	110
$\mathrm{H}(11)-\mathrm{C}(10)-\mathrm{H}(12)$	100
$\mathrm{H}(11)-\mathrm{C}(10)-\mathrm{H}(13)$	118
$\mathrm{H}(12)-\mathrm{C}(10)-\mathrm{H}(13)$	103
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(14)$	119
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(14)$	119
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(15)$	120
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(15)$	121

Very few data on bond distances and angles are available for organic sulfoxides. Abrahams (1956) has given some data for symmetrical sulfoxides. The C-S-O angle for a series of such compounds is nearly constant at 106° while the C-S-C angle varies from 93 to 114°. Hine (1962) in a study of the structure of S -methyl-L-cysteine sulfoxide found the C(methyl)-S-O angle to be 107.5°; the corresponding angle in the present case is 105.5°. Our value of 97.5° for the C-S-C angle also seems to agree well with previous results.

Distances and angles in the benzene ring show some variation. Three of the bonds, $\mathbf{C}(4)-\mathbf{C}(5), \mathrm{C}(5)-\mathbf{C}(6)$ and $\mathrm{C}(7)-\mathrm{C}(8)$, are somewhat shorter than the other three which are all close to the accepted value of 1.396 \AA. The internal angle at $C(4)$, to which S is attached, is very close to 120°. Recent observations (Carter, McPhail \& Sim, 1966; Hope, 1969) have suggested that electron-withdrawing substituents on a benzene ring lead to internal angles greater than 120° at the carbon atom to which they are attached. On this basis one must conclude that the sulfoxide group is not strongly electron-withdrawing, in agreement with a previously published suggestion (Schöberl \& Wagner, 1955). The lack of electron-withdrawing power is pre-
sumably due to the presence of the unshared electron pair. We note with interest that this lack of electronwithdrawing power seems to be contradicted by the sign and magnitude of the Hammett ' σ ' constant whose value places the electron-withdrawing power of the sulfoxide group above that of, for example, chlorine (Kosower, 1968).

The relatively small angle at C (7) presumably is due to the electron-donating effect of the methyl group. However, the similarly small angle at $C(9)$ cannot be explained as easily.

Table 8 gives the equation of the least-squares plane through the benzene ring; also listed are the deviations from this plane for all the atoms. The benzene ring is planar, with the largest deviation found for $\mathrm{C}(9)$ which is displaced $0.01 \AA$ from the plane. The ring methyl carbon is also quite close to the plane; however, the sulfur atom is tilted up from the plane by $0.06 \AA$. As already indicated by the C-C-S-O torsion angle, the oxygen atom lies quite close to the plane of the ring.

Table 8. Least-squares plane through benzene ring [atoms $\mathrm{C}(4)-\mathrm{C}(9)$] and deviations from plane
Normal equation of plane: $-2.827 x-7.004 y+5.315 z=0.392$.

	Deviation		Deviation
$\mathbf{S}(1)$	0.062	$\mathrm{C}(9)$	0.011
$\mathrm{O}(2)$	0.234	$\mathrm{C}(10)$	-0.004
$\mathrm{C}(3)$	-1.667	$\mathrm{H}(11)$	0.828
$\mathrm{C}(4)$	-0.004	$\mathrm{H}(12)$	-0.389
$\mathrm{C}(5)$	-0.003	$\mathrm{H}(13)$	-0.508
$\mathrm{C}(6)$	0.004	$\mathrm{H}(14)$	-0.009
$\mathrm{C}(7)$	0.002	$\mathrm{H}(15)$	0.150
$\mathrm{C}(8)$	-0.009		$\mathrm{H}(16)$
		$\mathrm{H}(17)$	-0.120
			-0.030

The positional parameters of a structure in a nonpolar space group are not supposed to depend much on the $\Delta f^{\prime \prime}$ values (Ueki, Zalkin \& Templeton, 1966; Cruickshank \& McDonald, 1967). The bond lengths obtained from the S configuration refinement (corresponding to negative $\Delta f^{\prime \prime}$ values) indeed agree well with those for the R configuration. The largest difference in distances between 'heavy' atoms is about 0.01 \AA, or about 2σ. The temperature factors for the two configurations differ by about one or two standard deviations.

We wish to thank Professor L.H.Sommer for bringing this problem to our attention. Support from the National Science Foundation is gratefully acknowledged.

References

Abrahams, S. C. (1956). Quart. Rev. Chem. Soc. London, 10, 407.
Axelrod, M., Bickart, P., Jacobus, J., Green, M. M. \& Mislow, K. (1968). J. Amer. Chem. Soc. 90, 4835.
Cahn, R. S., Ingold, C. K. \& Prelog, V. (1956). Experientia, 12, 81.

Carter, O. L., McPhail, A. T. \& Sim, G. A. (1966). J. Chem. Soc. A, p. 822.
Cruickshank, D. W. J. (1961). Acta Cryst. 14, 896.
Cruickshank, D. W. J. \& McDonald, W. S. (1967). Acta Cryst. 23, 9.
Day, J. \& Cram, D. J. (1965). J. Amer. Chem. Soc. 87, 4398.
Fleischer, E. B., Axelrod, M., Green, M. \& Mislow, K. (1964). J. Amer. Chem. Soc. 86, 3395.

Hamilton, W. J. (1965). Acta Cryst. 18, 502.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Hine, R. (1962). Acta Cryst. 15, 635.
Hope, H. (1969). Acta Cryst. B25, 78.
Hope, H. \& Christensen, A. T. (1968). Acta Cryst. B24, 375.

Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Ibers, J. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521.
Kosower, E. M. (1968). An Introduction to Physical Organic Chemistry, p. 49. New York: John Wiley.
Mislow, K., Green, M. M., Lauer, P., Melillo, T., Simmons, T. \& Ternay, A. L. (1965). J. Amer. Chem. Soc. 87, 1958.
Schöberl, A. \& Wagner, A. (1955). In Houben-Weyl, 9, 219.

Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Ueki, T., Zalkin, A. \& Templeton, D. H. (1966). Acta Cryst. 20, 836.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

The Crystal and Molecular Structure of Bromdihydroacronycine

By J.Zanos Gougoutas and B.A. Kaski
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

(Received 25 June 1968 and in revised form 23 June 1969)
Bromdihydroacronycine (1-methoxy-2-bromo-2', $2^{\prime}, 10$-trimethyldihydropyrano[$\left.5^{\prime}, 6^{\prime}-4,3\right]$ acrid- 9 -one, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Br}$) crystallizes in the monoclinic space group $P 2_{1} / c$ with $Z=4$. The unit-cell parameters are $a=9.06, b=12 \cdot 66, c=16 \cdot 66 \AA$, and $\beta=113.75^{\circ}$. 2173 reflections were recorded diffractometrically ($\mathrm{Cu} K \alpha$ radiation) and used in the determination. The structure was solved by the heavy-atom technique and refined by the method of least squares to a final value of $R=0.059$.

Acronycine, an alkaloid from Acronychia baueri Schott which exhibits potent broad spectrum antitumor activity, was initially considered to have either the angular structure (I) or the linear alternative (II) (Drummond \& Lahey, 1949). Since chemical degradation of acronycine produced a dimethoxy acid which was not identical with the independently synthesized dimethoxy acid (III) expected to result from degradation of structure (II), Macdonald \& Robertson (1966) concluded that acronycine has structure (I). Govindachari, Pai \& Subramaniam (1966) also decided in favor of the angular formulation from a consideration of the nuclear magnetic resonance spectrum of a hydrogenated derivative of acronycine.

(II)

(III)

(IV)

Our three-dimensional single-crystal X-ray analysis of bromdihydroacronycine (IV), the major product from the reaction of 11,12-dihydroacronycine with N bromosuccinimide,* confirms directly the structural assignment of acronycine as (I).

Slow crystallization of bromdihydroacronycine from ethyl acetate afforded yellow, acicular crystals. The cell parameters and symmetry, obtained from cali-

* We wish to thank Drs James Beck and Albert Pohland of the Eli Lilly Co., Indianapolis, Indiana, for their gift of bromdihydroacronycine. Their recently reported total synthesis of acronycine (Beck, Booher, Brown, Kwok \& Pohland, 1967; Beck, Kwok, Booher, Brown, Patterson, Pranc, Rockey \& Pohland, 1968) also confirms the structural assignment.

